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Abstract 

In this paper, we estimate GARCH, EGARCH, and GJR-GARCH models 
assuming normal and heavy-tailed distribution (i.e., GED). Results suggest that 
when the heavy-tailed distribution is considered, the persistence has found to be 
reduced in all the cases. Findings also reveal that positive shocks are more 
common than the negative shocks in this market. 

1. Introduction 

Although generalized autoregressive conditional heteroscedastic 
(GARCH) models have a long and comprehensive history over the years, 
they are not free of limitations. Black [1], for example, documents that 
stock returns are negatively correlated to changes in returns volatility 
implying that volatility tends to rise in response to bad news and fall in 
response to good news. GARCH models, on the other hand, assume that 
only magnitude and not the positivity or negativity unanticipated excess 
return determines the conditional variance. This suggests that a model in 
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which the conditional variance responds asymmetrically to positive and 
negative residuals might be preferable for asset pricing applications. 
Another crucial limitation of a GARCH model is that the non-negativity 
constraints on its parameters are imposed to ensure the positivity of the 
conditional variance. Such constraints can create difficulties in 
estimating GARCH models. 

Nelson [7], however, introduces the exponential GARCH or EGARCH 
model to present potential improvements over the conventional GARCH 
models. The EGARCH model earns its popularity due to the fact that it 
presents the asymmetric response of volatility to positive and negative 
returns. This model is also commonly used as it shares some of its 
properties with GARCH model. Glosten et al. [6] also propose another 
asymmetric GARCH model, popularly known as GJR-GARCH model, to 
deal with the limitation of symmetric GARCH models. 

The objective of this paper is twofold. First, we observe and compare 
the properties of symmetric and asymmetric GARCH models by 
analyzing the U.S.-Japan daily exchange rate series. To serve this 
purpose, we estimate GARCH, EGARCH, and GJR-GARCH models 
assuming normal and heavy-tailed distribution (i.e., GED). Our second 
objective is to verify whether incorporating asymmetric response of 
volatility to and negative shocks changes the conclusions obtained from 
the symmetric GARCH models. The rest of the paper is organized in the 
following way. Section 2 discusses the symmetric and asymmetric 
GARCH models. Section 3 summarizes the data. The results are 
discussed in Section 4 and Section 5 concludes the paper. 

2. Methodology 

2.1. GARCH models 

The basic model of representing non-correlated series with excess 
kurtosis and autocorrelated squares, proposed by Engle [3], is given by 

,ttt z σ=ε  



MODELLING VOLATILITY: SYMMETRIC OR … 101

where tz  is an i.i.d process with mean zero and variance 1 and tσ  is the 

volatility that evolves over time. The volatility, ,2
tσ  in the basic ARCH 

(1) model is defined as 
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where 0>w  and 0≥α  for 2
tσ  to be positive. 

The ARCH (1) model can easily be extended to the ARCH (q) model 
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However, early applications of ARCH models needed many lags to 
adequately represent the dynamic evolution of the conditional variances. 
In some applications, q could be even 50. To avoid computational 
problems when estimating such a large number of parameters, the 
parameters were restricted in an ad hoc manner. For example, Engle [4] 

assumes that ( )
( ) .1

1
+
−+α=α qq

iq
i  Later, Bollerslev [2] implements the 

same kind of restriction used to approximate the infinite polynomial of 
the Wald representation by the ratio of two finite polynomials, usually of 
very low orders. As a result, he proposed the GARCH (p, q) model given 
by 
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Then the GARCH (1, 1) model is simply given by 
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where ,0,0 ≥α>w  and 0≥β  for 2
tσ  to be positive. 

 



ANUPAM DUTTA 102

2.2. EGARCH models 

The standard GARCH model has a number of potential pitfalls. Such 
models cannot take into consideration asymmetry, leverage effects, and 
coefficient restrictions. Nelson [7] proposes the exponential GARCH or 
EGARCH model to resolve these limitations. Unlike the standard 
GARCH model, the EGARCH model can capture size effects as well as 
sign effects of shocks. The variance equation of EGARCH model is given 
as follows: 
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When 1−εt  is positive or there is good news, the total effect it−ε  of is 

( )iδ+1 .it−ε  In contrast, when it−ε  is negative or there is bad news, the 

total impact of it−ε  is ( ) .1 iti −εδ−  Besides, this model captures the 

leverage effect, which exhibits the negative association between lagged 
stock returns and contemporaneous volatility. The presence of leverage 
effects can be tested by the hypothesis that .0<δ  If ,0≠δ  then the 
impact is asymmetric. 

2.3. GJR-GARCH models 

Glosten et al. [6] suggest the GJR-GARCH model as an alternative 
method to the EGARCH model. Like the EGARCH model, the GJR-
GARCH model has also achieved a good empirical record in the 
literature. The variance of this model can be written as 
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where −
−itS  is a dummy variable which takes the value 1 if it−ε  is 

negative and 0 otherwise. The formula expresses the impact of 2
it−ε  on 

the conditional variance .2
tσ  The above model also confirms that bad 

news ( )0<εt  and good news ( )0>εt  might have different effects on 
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conditional variance. If the leverage effect exists, δ  is expected to be 
positive. The leverage effect is observed as the impulse ( )δ+α  of 

negative shocks, which is larger than the impulse ( )α  of positive shocks. 

In this model, good news and bad news have different effects on the 
conditional variance: good news has an impact of ,α  while bad news has 
an impact of ( ).δ+α  For ,0>δ  the leverage effect exists. 

2.4. Distribution hypotheses 

The probability distribution of asset returns often exhibits fatter tails 
than the standard normal distribution. The existence of heavy-tailedness 
is probably due to a volatility clustering in stock markets. In addition, 
another source for heavy-tailedness seems to be the sudden changes in 
stock returns. An excess kurtosis also might be originated from fat 
tailedness. Moreover, in practice, the returns are typically negatively 
skewed. In order to capture this phenomenon (e.g., heavy-tailedness), the 
GED distribution is also considered in our analysis. 

2.5. Tests for asymmetries in volatility 

Engle and Ng [5] have proposed a set of tests, known as sign and size 
bias tests, in order to determine whether an asymmetric model is 
required for a given series, or whether the symmetric GARCH model can 
be deemed adequate. Such tests are usually applied to the residuals of a 
GARCH fit to the returns data. The test for sign bias is based on the 
significance or otherwise of 1b  in the following regression: 

,1,10
2
, ttiti vDbbz ++= −

−  

where −
−1, tiD  is a dummy variable which takes the value 1 if it−ε  is 

negative and 0 otherwise and tv  is an i.i.d. error term. 

It could also be the case that the magnitude or size of the shock will 
affect whether the response of volatility to shocks is symmetric or not. In 
this case, a negative size bias test would be conducted. Negative size bias 
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is argued to be present if 1b  is statistically significant in the regression 

given below: 
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Similarly, positive size bias is said to be present if 1b  is statistically 

significant in the regression given below: 
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2.6. Likelihood ratio tests 

Likelihood ratio (LR) tests involve estimation under the null 
hypothesis and under the alternative so that two models are estimated: 
An unrestricted model and a model where the restrictions have been 
imposed. The maximized values of the log-likelihood function (LLF) for 
the restricted and unrestricted cases are compared. Suppose that the 
unconstrained model has been estimated and that a given maximized 
value of the LLF, denoted by ,uL  has been achieved. Suppose also that 

the model has been estimated imposing the constraint(s) and a new value 
of the LLF obtained, denoted by .rL  The LR test statistic asymptotically 

follows a Chi-squared distribution and is given by 

( ) ,~2 2
mur LLLR χ−−=  

where m denotes the number of restrictions. 

3. Data and their Properties 

In this paper, we employ U.S.-Japan daily exchange rate series which 
ranges from January 1, 2000 to January 31, 2012. We compute the return 
series as follows: 

,ln100
1−

∗=
t

t
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Pr  

where tP  indicates the observed daily price at time t and tr  is the 

corresponding daily return. Table 1 reports the main empirical properties 
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of the data set under consideration. It is evident from Table 1 that the 
mean value for the stock return is positive indicating that positive 
changes in stock price indices are more dominant than negative changes. 
The skewness and kurtosis coefficients report that stock market returns 
are leptokurtic and positively skewed with respect to the normal 
distribution (skewness = 0, kurtosis = 3). 

Table 1. Summary statistics of the return series 

Number of Observations Mean STDEV Skewness Kurtosis 

3050 0.00969 0.66400 0.355 3.531 

4. Results and Discussions 

4.1. Estimation of models and volatility persistence 

This section indicates and illustrates the results obtained by fitting 
symmetric and asymmetric GARCH models to the return series 
considered in this study. Table 2 reports the estimates obtained by 
GARCH, EGARCH, and GJR-GARCH models. It is interesting to note 
that the volatility persistence significantly decreased when heavy-tailed 
conditional density is considered. Thus, the heavy-tailed distributions 
play an important role in the reduction of persistence. In sum, 
distribution hypothesis seems to play a significant role in the estimation 
of persistence. 
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Table 2. Estimated models for the daily returns 

 GARCH EGARCH GJR-GARCH 

 Normal GED Normal GED Normal GED 

 007.0ˆ =w  006.0ˆ =w  092.0ˆ =w  084.0ˆ =w  007.0ˆ =w  007.0ˆ =w  

        (0.000)        (0.000)        (0.000)        (0.000)        (0.000)        (0.000) 

 033.0ˆ =α  031.0ˆ =α  094.0ˆ =α  089.0ˆ =α  047.0ˆ =α  044.0ˆ =α  

        (0.000)       (0.000)        (0.000)        (0.000)        (0.000)        (0.000) 

 950.0ˆ =β  951.0ˆ =β  977.0ˆ =β  981.0ˆ =β  954.0ˆ =β  952.0ˆ =β  

       (0.000)        (0.000)        (0.000)        (0.000)        (0.000) (0.000) 

   042.0ˆ =δ  034.0ˆ =δ  038.ˆ −=δ  032.ˆ −=δ  

    (0.000) (0.000)  (0.000)  (0.000) 

Persistence 0.983 0.982 0.977 0.981 0.981 0.980 

Log-likelihood   – 2974.47 – 2895.15 – 2956.84 – 2886.18 – 2965.06 – 2890 

Notes: The persistence is calculated as β+α ˆˆ  for GARCH model, β̂  for EGARCH model, 

and β+δ+α ˆ2ˆˆ  for GJR-GARCH model. Values in parentheses denote the p-values. 

4.2. Asymmetric and leverage effects 

The asymmetric and leverage effects can be examined by the 
nonlinear asymmetric variance specifications, EGARCH and GJR-
GARCH, under different distribution assumptions. The coefficient is 
found statistically significant in all cases indicating that asymmetry does 
exist. However, the sign of is positive in EGARCH model and negative in 
GJR-GARCH model under all distributions implying that there exist no 
leverage effects. In addition, good news seems to have more impact on 
volatility than the bad news. As Table 3 presents, both EGARCH and 
GJR-GARCH models reveal that good news has an impact on volatility 
more than bad news under different distribution assumptions. In the 
GJR-GARCH model assuming GED, for instance, the effect of good news 
on conditional volatility is 3.67 times more than bad news. 
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Table 3. The magnitude of news impact on volatility 

 EGARCH GJR-GARCH 

 Normal GED Normal GED 

Bad news 0.958 0.966 0.009 0.012 

Good news 1.042 1.034 0.047 0.044 

Notes: The asymmetry is calculated as 
δ+

δ+−
ˆ1

ˆ1  for EGARCH model and 
α
δ+α

ˆ
ˆˆ  for      

GJR-GARCH model. 

4.3. Test of asymmetries 

Table 4 reports the results for testing asymmetries in volatility. 
Findings show that the sign bias test statistics are significant for the 
asymmetric models. The two size bias test statistics are also highly 
significant with positive size bias test statistics having higher values in 
all the cases. These results indicate a size effect of news, which is 
stronger for good news than for bad news. 

Table 4. Tests of asymmetries 

 GARCH EGARCH GJR-GARCH 

 Normal GED Normal GED Normal GED 

Sign bias – 1.61 – 1.53 – 1.98 – 1.99 – 2.03 – 2.09 

Negative size bias – 23.79 – 20.48 – 24.26 – 23.68 – 21.99 – 23.77 

Positive size bias   38.03   41.62   37.78   38.14    39.90    38.37 

4.4. Likelihood ratio tests 

Table 2 shows the maximized values of different GARCH models 
under different distributional assumptions. For example, a maximized 
LLF of 2890 is achieved for the GJR-GARCH model assuming GED. Now, 
to test ,0:0H =δ  the model is estimated imposing the restriction and 
the maximized LLF falls to – 2895.15 as shown in Table 2. The test 
statistic is given by LR = – 2(– 2895.15 – 2890) = 10.30. Since the test 

follows a 84.32
1 =χ  at 5 percent level of significance, the null is rejected. 

Similar inference can be drawn when GJR-GARCH model is estimated 
assuming normality. 
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5. Conclusion 

In this paper, we study and compare the properties of symmetric and 
asymmetric GARCH models by analyzing the U.S.-Japan daily exchange 
rate series. In doing so, we estimate GARCH, EGARCH, and GJR-GARCH 
models assuming normal and heavy-tailed distribution (i.e., GED). Our 
analysis reveals that when the heavy-tailed distribution is considered, 
the persistence is found to be reduced in each of the cases under study. 
We also make an attempt to verify whether incorporating asymmetric 
response of volatility to positive and negative shocks changes the 
conclusions obtained from the symmetric GARCH models. Findings 
indicate that positive shocks are more common than the negative shocks 
in this return series. However, tests for asymmetries in volatility indicate 
a size effect of news, which is stronger for good news than for bad news. 
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